DIY Moto Fix
  • BLOG
  • Motorcycle Lift
  • BOOKS
    • Four Stroke
    • Two Stroke
  • VIDEOS
  • FREEBIES
  • ABOUT

How The Two-Stroke Exhaust System Works

11/12/2017

Comments

 
How the two stroke exhaust system works
In my last post, I shared details about how the two-stroke cylinder works, in today's post I want to provide an overview of how a performance two-stroke engine's exhaust system works.

Adding a performance exhaust system can be a great way to increase power and/or alter the power delivery of an engine. I would also argue that optimizing a two-stroke engine’s exhaust system is equally as important as ensuring the cylinder’s ports are correctly designed for the given application. Not all exhaust systems are designed to do the same things, and much like cylinder port design, exhaust designs are intended to alter power in specific ways. Having a basic understanding of how an exhaust system works can go a long way when it comes to selecting the right exhaust pipe for your engine.

Two-stroke exhaust design is complicated and there are many different variables that must be considered when designing a pipe. I don’t intend to go into all of them, but I will share a few of the most critical.
two stroke exhaust layout
Each time the exhaust port opens to release spent combustion gases, pressure pulses are created. Modern pipe designs harness this pulse energy and use it to help scavenge and fill the cylinder. The process starts when a positive pressure pulse is created once the exhaust port opens and combustion gases leave the cylinder. The positive pulse travels down the pipe until it reaches the diffuser, at which point part of the pulse is inverted and reflected back towards the cylinder as a negative wave. This negative wave is very beneficial in pulling spent exhaust gases out of the cylinder and fresh mixture up through the transfer ports. The remaining positive pulse continues on its journey towards the end of the pipe where it encounters the reflector. The reflector acts as the name implies and forces the positive pulse back towards the exhaust port. Once reflected back, the pulse remains positive and, if the pipe is designed correctly, will reach the exhaust port just as the piston is about to close off the port on the compression stroke at the desired RPM for maximum power. Any fresh mixture which has escaped out the cylinder will be forced back in by the positive pressure pulse.

The tuned length of the pipe is dictated by the exhaust port timing, RPM of max power, and the speed of sound. Pulse length and amplitude are governed by the angles of the diffuser and reflector. Generally, steeper cone angles create pulses with more amplitude but shorter duration. Shallower angles generate pulses with less amplitude but longer duration. Given these variables, it is easy to see how a pipe could be tailored for specific applications. An engine converted for road racing may utilize a pipe designed for peak power which incorporates steep diffuser and reflector cone angles so that pulse amplitude is not sacrificed. This peak power would likely come at the expense of a narrowed range of power. An engine tailored for woods riding may feature a pipe with shallower cone angles, resulting in less pulse amplitude, but a broader spread of power.  

The last parameter I want to touch on is how the tailpipe, which is sometimes referred to as the stinger, influences the pipe. The tailpipe creates a flow restriction in the pipe which allows the pipe to have a certain amount of back pressure. Enlarge the tailpipe and the back pressure decreases, make it smaller and the back pressure increases. As back pressure increases or decreases, so does temperature and ultimately the speed of sound. As the speed of sound changes, so does the resonance RPM of the pipe. If the tailpipe is sized too small, cylinder scavenging will be inhibited. When this happens, the cylinder, fresh mixture, and piston will all be overheated.

While engineers and tuners can estimate starting pipe dimensions and tuned lengths, a great deal of trial and error testing is usually still necessary to fine tune the exhaust pipe and optimize the design. Unless you intend on building your own exhausts, this work will have already been done for you.

When selecting an exhaust system, you need to focus on how the exhaust alters the power curve. Exhaust systems are tailored to deliver more bottom end performance, top-end performance, or performance throughout the power curve. Selecting which system is right for you will depend on how you want your engine to perform. If you’ve chosen to modify your cylinder ports, installing an exhaust system that compliments the porting can be very beneficial.

You might be wondering about slip-on mufflers. If you’ve followed along with my explanation of how exhaust pipes work, you’ll notice I made no mention of the muffler. While the muffler can have a small effect on performance, it is not the primary factor. Upgrading a muffler is a good way to reduce weight, but there won’t be a slip-on out there which significantly increases power, in the same way, a properly designed expansion chamber can.

I hope you enjoyed this write-up on key features affecting the performance of two-stroke cylinders. As for Two Stroke Handbook news, we received our first printed proof of the book this last week! Needless to say, we are inching closer and closer to an official release date. To stay updated on The Two Stroke Dirt Bike Engine Building Handbook we created an email sign up for our readers. Click this link to sign up, see the new cover, the Table of Contents, and some sneak peek pages right from the book.

Thanks for reading and have a great rest of your week!
​

-Paul
Comments
    Picture
    Learn More About
    Paul Olesen
    The Four Stroke Dirt Bike Engine Building Handbook

    Inspirations

    1.  JOHN BRITTEN
    2.  KIM NEWCOMBE
    3.  BURT MUNROE
    4.  FRITS OVERMARS
    5.  JAN THIEL
    6.  WAYNE "WOBBLY"      WRIGHT

    Categories

    All
    Buying Used Dirt Bikes
    Cam Chain Maintenance
    Changing The Oil
    Compression Testing
    Dirt Bike Maintenance
    Engine Deisgn
    Fixing Broken Bolts
    Four Stroke Rebuild
    Free Motorcycle Films
    Ice Riding
    Leak Down Testing
    Motorcycle Wrenching Tools
    Replacing Spokes
    Service Manuals
    Suspension
    Two Stroke
    Two Stroke Rebuild
    Used Bike Buyer's Guides
    Wheel Truing
    Workshop Setup

    Archives

    November 2022
    June 2022
    January 2022
    July 2021
    June 2021
    May 2021
    September 2020
    August 2020
    July 2020
    April 2019
    March 2019
    October 2018
    April 2018
    March 2018
    January 2018
    November 2017
    October 2017
    September 2017
    July 2017
    June 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014

    Favorite Films

    1.  ONE MAN'S DREAM
    2.  LOVE, SPEED, AND LOSS
    3.  WORLD'S FASTEST INDIAN
    4.  TT3D
    5.  ON ANY SUNDAY

    eNews Sign Up

store

CONTACT US

[email protected]

WEBSITE TERMS & CONDITIONS

© COPYRIGHT 2022 DIY MOTO FIX LLC